Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects.
نویسندگان
چکیده
BACKGROUND Aging is associated with increased oxidative damage at multiple cellular and tissular levels. A decrease in mitochondrial function has repeatedly been advocated as a primary key event, especially on the basis of analysis of skeletal muscle mitochondria. However, some doubts on this issue have arisen when confounding variables (such as physical activity or smoking habit) have been taken into account in the analysis of mitochondrial respiratory chain (MRC) enzyme activities or when additional analytical parameters such as enzyme ratios have been considered. OBJECTIVE To determine whether oxidative damage and enzyme activities of the MRC are influenced by the aging process in human hearts. PATIENTS AND METHODS We studied cardiac muscle obtained from 59 organ donors (age: 56+/-12 years, 75% men). Oxidative membrane damage was evaluated through the assessment of lipid peroxidation. Absolute and relative enzyme activities (AEA and REA, respectively) of complex I, II, III and IV of the MRC were spectrophotometrically measured. Stoichiometric relationships among MRC complexes were also assessed through calculating MRC ratios. Linear regression analyses were employed to disclose any potential correlation between mitochondrial dysfunction and aging. RESULTS We found a progressive, significant increase of heart membrane lipid peroxidation with aging (P<0.05). Conversely, neither AEA nor REA decreased with age (P=n.s. for all complexes). Similarly to observations in other tissues, we found that stoichiometry of the MRC enzymes is maintained within a narrow range in human hearts. When the effects of aging on MRC ratios were explored, we failed again in demonstrating any subtle disarray. CONCLUSION MRC enzymes remain preserved in heart with aging, and thus they cannot be considered the main cause of the increased oxidative damage associated with aging.
منابع مشابه
Toxicity mechanisms of Cigarette Smoke on Eye and Kidney using Isolated Mitochondria
Cigarette smoking is one of the main risk factors for premature human death associated to a variety of respiratory and vascular diseases, and cancer due to containing Hundreds of toxicants. Rat mitochondria were obtained by differential ultracentrifugation and incubated with different concentrations (1, 10 and 100%) of standardized cigarette smoke extract (CSE). Our results showed that cigarett...
متن کاملLoss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction
The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in ...
متن کاملIncreased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months
Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we ...
متن کاملCardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction.
Cardiac reperfusion and aging are associated with increased rates of mitochondrial free radical production. Mitochondria are therefore a likely site of reperfusion-induced oxidative damage, the severity of which may increase with age. 4-Hydroxy-2-nonenal (HNE), a major product of lipid peroxidation, increases in concentration upon reperfusion of ischemic cardiac tissue, can react with and inact...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2000